论文标题
秘密:事实检查的生物医学Covid-19推文
CoVERT: A Corpus of Fact-checked Biomedical COVID-19 Tweets
论文作者
论文摘要
在共同199大流行期间,有关这种新疾病的大量生物医学信息已在社交媒体上发表。其中一些信息可能会对人们的健康构成真正的危险,尤其是在共享虚假信息的情况下,例如有关如何在没有专业医疗建议的情况下治疗疾病的建议。因此,专门为医疗领域开发的自动检查资源和系统至关重要。尽管现有的事实检查资源涵盖了新闻中与COVID相关的信息,或量化了推文中的错误信息的数量,但没有数据集提供与事实检查的与COVID相关的Twitter帖子,并提供了有关生物医学实体,关系,关系和相关证据的详细注释。我们贡献了秘密,这是一项事实检查的推文语料库,重点是生物医学和COVID-19与19的(MIS)信息。该语料库由300条推文组成,每条推文都带有医疗名称实体和关系。我们采用一种新颖的众包方法来注释所有推文,并通过事实检查标签和支持证据,这是人群工作人员在线搜索的。这种方法导致中等通道的一致性。此外,我们将检索到的证据提取物用作事实检查管道的一部分,发现现实世界的证据比预验证的语言模型中间接获得的知识更有用。
Over the course of the COVID-19 pandemic, large volumes of biomedical information concerning this new disease have been published on social media. Some of this information can pose a real danger to people's health, particularly when false information is shared, for instance recommendations on how to treat diseases without professional medical advice. Therefore, automatic fact-checking resources and systems developed specifically for the medical domain are crucial. While existing fact-checking resources cover COVID-19-related information in news or quantify the amount of misinformation in tweets, there is no dataset providing fact-checked COVID-19-related Twitter posts with detailed annotations for biomedical entities, relations and relevant evidence. We contribute CoVERT, a fact-checked corpus of tweets with a focus on the domain of biomedicine and COVID-19-related (mis)information. The corpus consists of 300 tweets, each annotated with medical named entities and relations. We employ a novel crowdsourcing methodology to annotate all tweets with fact-checking labels and supporting evidence, which crowdworkers search for online. This methodology results in moderate inter-annotator agreement. Furthermore, we use the retrieved evidence extracts as part of a fact-checking pipeline, finding that the real-world evidence is more useful than the knowledge indirectly available in pretrained language models.