论文标题

Emphi:以人类的意图产生善解人意的反应

EmpHi: Generating Empathetic Responses with Human-like Intents

论文作者

Chen, Mao Yan, Li, Siheng, Yang, Yujiu

论文摘要

在同理心对话中,人类表达了同情心的同情心。然而,大多数现有的同理心对话方法都缺乏善解人意的意图,从而导致单调同理心。为了解决善解人意对话模型和人类之间同情意图分布的偏见,我们提出了一种新型模型,以产生善解人意的反应,并以人为一致的同情意图(简称为emphi)。确切地说,Emphi通过离散的潜在变量了解了潜在的同情意图的分布,然后结合了隐式和明确的意图表示,以与各种移情意图产生响应。实验表明,在自动和人类评估上,Emphi在同理心,相关性和多样性方面都优于最先进的模型。此外,案例研究表明了我们模型的高解释性和出色表现。

In empathetic conversations, humans express their empathy to others with empathetic intents. However, most existing empathetic conversational methods suffer from a lack of empathetic intents, which leads to monotonous empathy. To address the bias of the empathetic intents distribution between empathetic dialogue models and humans, we propose a novel model to generate empathetic responses with human-consistent empathetic intents, EmpHi for short. Precisely, EmpHi learns the distribution of potential empathetic intents with a discrete latent variable, then combines both implicit and explicit intent representation to generate responses with various empathetic intents. Experiments show that EmpHi outperforms state-of-the-art models in terms of empathy, relevance, and diversity on both automatic and human evaluation. Moreover, the case studies demonstrate the high interpretability and outstanding performance of our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源