论文标题

视觉识别的因果运输能力

Causal Transportability for Visual Recognition

论文作者

Mao, Chengzhi, Xia, Kevin, Wang, James, Wang, Hao, Yang, Junfeng, Bareinboim, Elias, Vondrick, Carl

论文摘要

视觉表示基于对象识别任务的基础,但它们通常包含健壮和非稳固特征。我们的主要观察结果是,图像分类器在分布样本中的性能可能会较差,因为在新环境中可以更改非持bust特征和标签之间的虚假相关性。通过通过因果图分析分布概括的程序,我们表明标准分类器失败了,因为图像和标签之间的关联在整个设置之间不可传输。但是,我们随后表明,切断所有混淆来源的因果效应在整个领域仍然不变。这促使我们开发了一种算法来估计图像分类的因果效应,图像分类是可以在源和目标环境中运输(即不变的)的。在没有观察其他变量的情况下,我们表明我们可以在经验假设下使用深层模型中的代表来得出因果效应的估计。理论分析,经验结果和可视化表明,我们的方法捕获了因果的不变,并改善了整体概括。

Visual representations underlie object recognition tasks, but they often contain both robust and non-robust features. Our main observation is that image classifiers may perform poorly on out-of-distribution samples because spurious correlations between non-robust features and labels can be changed in a new environment. By analyzing procedures for out-of-distribution generalization with a causal graph, we show that standard classifiers fail because the association between images and labels is not transportable across settings. However, we then show that the causal effect, which severs all sources of confounding, remains invariant across domains. This motivates us to develop an algorithm to estimate the causal effect for image classification, which is transportable (i.e., invariant) across source and target environments. Without observing additional variables, we show that we can derive an estimand for the causal effect under empirical assumptions using representations in deep models as proxies. Theoretical analysis, empirical results, and visualizations show that our approach captures causal invariances and improves overall generalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源