论文标题

在旋转双摆的平衡和分叉上

On the Equilibria and Bifurcations of a Rotating Double Pendulum

论文作者

Tot, Jonathan, Lewis, Robert H.

论文摘要

Double Penulum是一种简单的经典力学系统,被广泛研究为混乱动力学的一个例子和测试。 2016年,Maiti等。研究了简单的双摆的概括,其长度相等的点量相等,旋转双摆,固定在坐标系统上,均匀地绕垂直旋转。在本文中,我们研究了由物理钟摆构建的双子摆的大量概括,并询问系统在相对较大的参数空间中为系统存在哪些平衡构型,以及在这些平衡中发生的分叉。消除算法被用来减少多项式方程的系统,从而使平衡被可视化,并证明参数空间中的哪些模型表现出分叉。我们发现在计算机代数系统(CAS)Fermat中编写的Dixon结果的DixonEdF算法能够完成代表分叉化的方程式的计算,而与其他算法的尝试在几个小时后终止。

The double pendulum, a simple system of classical mechanics, is widely studied as an example of, and testbed for, chaotic dynamics. In 2016, Maiti et al. studied a generalization of the simple double pendulum with equal point-masses at equal lengths, to a rotating double pendulum, fixed to a coordinate system uniformly rotating about the vertical. In this paper, we study a considerable generalization of the double pendulum, constructed from physical pendula, and ask what equilibrium configurations exist for the system across a comparatively large parameter space, as well as what bifurcations occur in those equilibria. Elimination algorithms are employed to reduce systems of polynomial equations, which allows for equilibria to be visualized, and also to demonstrate which models within the parameter space exhibit bifurcation. We find the DixonEDF algorithm for the Dixon resultant, written in the computer algebra system (CAS) Fermat, to be capable to complete the computation for the challenging system of equations that represents bifurcation, while attempts with other algorithms were terminated after several hours.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源