论文标题
多元空间和时空拱形模型
A Multivariate Spatial and Spatiotemporal ARCH Model
论文作者
论文摘要
本文介绍了基于vec-eprentation的多元时空自回归有条件异方差(ARCH)模型。该模型包括瞬时空间自动回归溢出效应在条件差异中,因为它们通常存在于空间计量经济学应用中。此外,明确建模了空间和时间跨变量效应。我们使用对数方方的转换将模型转换为多元时空自回归模型,并得出一致的准最大可能性估计器(QMLE)。对于有限样本和不同的误差分布,在一系列蒙特卡洛模拟中分析了QMLE的性能。此外,我们用真实的示例说明了新模型的实际用法。我们分析了2002年至2014年柏林的三种不同物业类型的每月房地产价格回报。我们发现弱(瞬时)空间相互作用,而市场风险中的时间自回归结构更为重要。不同属性类型之间的相互作用仅发生在时间滞后变量中。因此,我们看到主要的时间波动簇和弱空间波动率溢出。
This paper introduces a multivariate spatiotemporal autoregressive conditional heteroscedasticity (ARCH) model based on a vec-representation. The model includes instantaneous spatial autoregressive spill-over effects in the conditional variance, as they are usually present in spatial econometric applications. Furthermore, spatial and temporal cross-variable effects are explicitly modelled. We transform the model to a multivariate spatiotemporal autoregressive model using a log-squared transformation and derive a consistent quasi-maximum-likelihood estimator (QMLE). For finite samples and different error distributions, the performance of the QMLE is analysed in a series of Monte-Carlo simulations. In addition, we illustrate the practical usage of the new model with a real-world example. We analyse the monthly real-estate price returns for three different property types in Berlin from 2002 to 2014. We find weak (instantaneous) spatial interactions, while the temporal autoregressive structure in the market risks is of higher importance. Interactions between the different property types only occur in the temporally lagged variables. Thus, we see mainly temporal volatility clusters and weak spatial volatility spill-overs.