论文标题
部分可观测时空混沌系统的无模型预测
Self-Supervised Information Bottleneck for Deep Multi-View Subspace Clustering
论文作者
论文摘要
在本文中,我们从信息理论的角度探讨了深度视图子空间聚类框架的问题。我们将传统信息瓶颈原则扩展到以自我监督的方式学习不同观点之间的共同信息,因此建立了一个新的框架,称为自我监督信息瓶颈基于多视图子空间聚类(SIB-MSC)。 SIB-MSC从信息瓶颈继承了优势,可以通过从视图本身中删除多余的信息,同时保留其他视图的潜在表示,从而在不同视图的潜在表示中捕获不同视图的潜在信息。实际上,每种观点的潜在表示提供了一种自我监督的信号,用于训练其他观点的潜在表示。此外,SIB-MSC试图通过引入基于共同信息的正规化术语来学习每个视图的其他潜在空间,以捕获特定视图的信息,以进一步提高多视图子空间集群的性能。据我们所知,这是探索多视图子空间群集的第一项探索信息瓶颈的工作。关于现实世界多视图数据的广泛实验表明,我们的方法比相关的最新方法实现了卓越的性能。
In this paper, we explore the problem of deep multi-view subspace clustering framework from an information-theoretic point of view. We extend the traditional information bottleneck principle to learn common information among different views in a self-supervised manner, and accordingly establish a new framework called Self-supervised Information Bottleneck based Multi-view Subspace Clustering (SIB-MSC). Inheriting the advantages from information bottleneck, SIB-MSC can learn a latent space for each view to capture common information among the latent representations of different views by removing superfluous information from the view itself while retaining sufficient information for the latent representations of other views. Actually, the latent representation of each view provides a kind of self-supervised signal for training the latent representations of other views. Moreover, SIB-MSC attempts to learn the other latent space for each view to capture the view-specific information by introducing mutual information based regularization terms, so as to further improve the performance of multi-view subspace clustering. To the best of our knowledge, this is the first work to explore information bottleneck for multi-view subspace clustering. Extensive experiments on real-world multi-view data demonstrate that our method achieves superior performance over the related state-of-the-art methods.