论文标题
通过机器学习,具有高保真离子传输模型的多尺度膜过程优化
Multi-scale membrane process optimization with high-fidelity ion transport models through machine learning
论文作者
论文摘要
最佳整合到大型分离过程植物中的创新膜技术对于经济水处理和处置至关重要。然而,纳米级的非线性差分 - 地面机械模型通常描述了通过膜的大规模运输,而该过程及其经济性范围为大规模。因此,过程植物中膜的最佳设计需要跨多个尺度做出决策,这是不可使用标准工具进行的。在这项工作中,我们将人工神经网络〜(ANN)嵌入确定性的全局优化中,以弥合量表的间隙。这种方法可以通过准确的传输模型来确定膜过程的全局优化 - 避免通过启发式或短切模型利用不准确的近似值。根据一维扩展的Nernst-Planck离子传输模型生成的数据,对ANN进行了训练,并扩展到膜模块的更准确的二维分布,从而捕获了与过滤相关的盐的降低盐的保留率。我们同时设计膜和植物布局,得出最佳的膜模块合成特性,以及用于多个目标,进料浓度,过滤阶段和盐混合物的最佳植物设计。开发的过程模型和优化求解器可用开源,从而在膜科学中实现了计算资源有效的多尺度优化。
Innovative membrane technologies optimally integrated into large separation process plants are essential for economical water treatment and disposal. However, the mass transport through membranes is commonly described by nonlinear differential-algebraic mechanistic models at the nano-scale, while the process and its economics range up to large-scale. Thus, the optimal design of membranes in process plants requires decision making across multiple scales, which is not tractable using standard tools. In this work, we embed artificial neural networks~(ANNs) as surrogate models in the deterministic global optimization to bridge the gap of scales. This methodology allows for deterministic global optimization of membrane processes with accurate transport models -- avoiding the utilization of inaccurate approximations through heuristics or short-cut models. The ANNs are trained based on data generated by a one-dimensional extended Nernst-Planck ion transport model and extended to a more accurate two-dimensional distribution of the membrane module, that captures the filtration-related decreasing retention of salt. We simultaneously design the membrane and plant layout yielding optimal membrane module synthesis properties along with the optimal plant design for multiple objectives, feed concentrations, filtration stages, and salt mixtures. The developed process models and the optimization solver are available open-source, enabling computational resource-efficient multi-scale optimization in membrane science.