论文标题

通过因果机学习评估农业土地适用性

Towards assessing agricultural land suitability with causal machine learning

论文作者

Giannarakis, Georgios, Sitokonstantinou, Vasileios, Lorilla, Roxanne Suzette, Kontoes, Charalampos

论文摘要

了解农业土地对采用特定管理实践的适用性对于对气候变化的可持续和韧性农业至关重要。因果机器学习领域的最新发展使干预措施对感兴趣结果的影响估计,对于一组观察到的特征描述的样本。我们介绍了一个可扩展的数据驱动框架,该框架利用地球观测并框架农业土地适合性作为地理空间影响评估问题,其中农业实践对农业生态系统的估计影响是土地适应性的分数和指导决策。我们将其作为因果机器学习任务,并讨论如何在不断变化的气候下将这种方法用于农业规划。具体而言,我们从农作物类型地图中提取“作物轮换”和“景观作物多样性”的农业管理实践,占气候和土地利用数据,并使用双重机器学习对比利时范围内的净生产力(NPP)的异质作用估计,从2010年到2020年,从2020年到2020年,我们发现了对农作物的影响很小的效应,而陆地上的影响很小。最后,我们观察到实践的空间中有相当大的效果异质性并分析它。

Understanding the suitability of agricultural land for applying specific management practices is of great importance for sustainable and resilient agriculture against climate change. Recent developments in the field of causal machine learning enable the estimation of intervention impacts on an outcome of interest, for samples described by a set of observed characteristics. We introduce an extensible data-driven framework that leverages earth observations and frames agricultural land suitability as a geospatial impact assessment problem, where the estimated effects of agricultural practices on agroecosystems serve as a land suitability score and guide decision making. We formulate this as a causal machine learning task and discuss how this approach can be used for agricultural planning in a changing climate. Specifically, we extract the agricultural management practices of "crop rotation" and "landscape crop diversity" from crop type maps, account for climate and land use data, and use double machine learning to estimate their heterogeneous effect on Net Primary Productivity (NPP), within the Flanders region of Belgium from 2010 to 2020. We find that the effect of crop rotation was insignificant, while landscape crop diversity had a small negative effect on NPP. Finally, we observe considerable effect heterogeneity in space for both practices and analyze it.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源