论文标题

卡坦的方法及其在捆捆同谋中的应用

Cartan's method and its applications in sheaf cohomology

论文作者

Liu, Yuan

论文摘要

本文旨在使用cartan的原始方法在封闭的立方体上证明定理A和B,以提供不同的证据,即如果(i)度超过其真实维度,或者(ii)捆捆(局部)是(局部)常数,并且程度为正,则在封闭的立方体上消失了。在第一种情况下,我们可以进一步利用Godement的论点来显示副拓扑层流的拓扑维度小于或等于其实际维度。

This paper aims to use Cartan's original method in proving Theorem A and B on closed cubes to provide a different proof of the vanishing of sheaf cohomology over a closed cube if either (i) the degree exceeds its real dimension or (ii) the sheaf is (locally) constant and the degree is positive. In the first case, we can further use Godement's argument to show the topological dimension of a paracompact topological manifold is less than or equal to its real dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源