论文标题

瓦特:开放式学习的基础设施

Watts: Infrastructure for Open-Ended Learning

论文作者

Dharna, Aaron, Summers, Charlie, Dasari, Rohin, Togelius, Julian, Hoover, Amy K.

论文摘要

本文提出了一个称为瓦特的框架,用于实施,比较和重组开放式学习(OEL)算法。由模块化和算法灵活性的动机,Watts雾化了OEL系统的组成部分,以促进对方法之间的研究和直接比较。该论文研究了三种OEL算法的实现,引入了框架的模块。希望瓦特能够实现基准测试并探索新型的OEL算法。该存储库可在\ url {https://github.com/aadharna/watts}中获得

This paper proposes a framework called Watts for implementing, comparing, and recombining open-ended learning (OEL) algorithms. Motivated by modularity and algorithmic flexibility, Watts atomizes the components of OEL systems to promote the study of and direct comparisons between approaches. Examining implementations of three OEL algorithms, the paper introduces the modules of the framework. The hope is for Watts to enable benchmarking and to explore new types of OEL algorithms. The repo is available at \url{https://github.com/aadharna/watts}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源