论文标题

在空中光学截面的视野中的作用

On the Role of Field of View for Occlusion Removal with Airborne Optical Sectioning

论文作者

Seits, Francis, Kurmi, Indrajit, Nathan, Rakesh John Amala Arokia, Ortner, Rudolf, Bimber, Oliver

论文摘要

植被引起的遮挡是在搜索和救援,野火检测,野生动植物观察,监视,边境控制等地区进行遥感应用的重要问题。机载光学切片(AOS)是一种光学,波长独立的合成孔径成像技术,可实时支持计算闭塞的去除。它可以用诸如无人机之类的载人或无人飞机使用。在本文中,我们展示了应用成像系统的森林密度与视野(FOV)之间的关系。这一发现是在模拟的程序森林模型的帮助下进行的,该模型比我们以前的统计模型更为现实的遮挡特性。虽然过去曾使用自动和自主研究原型探索AOS,但我们为DJI系统提供了免费的AOS集成。它使Bluelight组织和其他人能够使用和探索与兼容,手动操作,现成的无人机的AO。根据我们的新发现选择了此实现的(数字裁剪)默认FOV。

Occlusion caused by vegetation is an essential problem for remote sensing applications in areas, such as search and rescue, wildfire detection, wildlife observation, surveillance, border control, and others. Airborne Optical Sectioning (AOS) is an optical, wavelength-independent synthetic aperture imaging technique that supports computational occlusion removal in real-time. It can be applied with manned or unmanned aircrafts, such as drones. In this article, we demonstrate a relationship between forest density and field of view (FOV) of applied imaging systems. This finding was made with the help of a simulated procedural forest model which offers the consideration of more realistic occlusion properties than our previous statistical model. While AOS has been explored with automatic and autonomous research prototypes in the past, we present a free AOS integration for DJI systems. It enables bluelight organizations and others to use and explore AOS with compatible, manually operated, off-the-shelf drones. The (digitally cropped) default FOV for this implementation was chosen based on our new finding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源