论文标题

用于获取知识的机器学习和非热系统的逆设计加速

Machine learning for knowledge acquisition and accelerated inverse-design for non-Hermitian systems

论文作者

Ahmed, W. W., Farhat, M., Staliunas, K., Zhang, X., Wu, Y.

论文摘要

非热系统为不寻常的物理特性提供了新的平台,这些平台可以通过重新分布折射率的真实和虚构部分来灵活地操纵,折射率的真实和虚构部分会破坏常规的波传播对称性,从而导致不对称的反射和与波传播方向相对于波动的传播。在这里,我们将受监督和无监督的学习技术用于在非热门系统中获取的知识,从而加速了反相反的设计过程。特别是,我们构建了一个深度学习模型,该模型与非保守环境中的传播和不对称反射相关联,并提出了亚序列学习,以识别传输光谱中的非热特征。开发的深度学习框架确定了所需光谱响应对给定结构的可行性,并发现有效的增益损失参数可以量身定制光谱响应的作用。这些发现为智能的逆设计铺平了道路,并塑造了我们对一般非热门系统中物理机制的理解。

Non-Hermitian systems offer new platforms for unusual physical properties that can be flexibly manipulated by redistribution of the real and imaginary parts of refractive indices, whose presence breaks conventional wave propagation symmetries, leading to asymmetric reflection and symmetric transmission with respect to the wave propagation direction. Here, we use supervised and unsupervised learning techniques for knowledge acquisition in non-Hermitian systems which accelerate the inverse design process. In particular, we construct a deep learning model that relates the transmission and asymmetric reflection in non-conservative settings and proposes sub-manifold learning to recognize non-Hermitian features from transmission spectra. The developed deep learning framework determines the feasibility of a desired spectral response for a given structure and uncovers the role of effective gain-loss parameters to tailor the spectral response. These findings pave the way for intelligent inverse design and shape our understanding of the physical mechanism in general non-Hermitian systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源