论文标题

学习分裂以自动偏见检测

Learning to Split for Automatic Bias Detection

论文作者

Bao, Yujia, Barzilay, Regina

论文摘要

在有偏见的数据集中训练时,分类器会偏见。作为一种补救措施,我们建议学习分裂(LS),这是一种用于自动偏置检测的算法。给定一个带有输入标签对的数据集,LS学会了将该数据集分开,以便在训练分训练中训练的预测因素不能推广到测试分配。该性能差距表明,在数据集中,测试分裂的代表性不足,这是潜在偏差的信号。由于我们对偏见没有注释,因此确定不可替代的分裂是具有挑战性的。在这项工作中,我们表明,测试拆分中每个示例的预测正确性可以用作弱监督的来源:如果我们将正确预测的示例从测试拆分中移开,则只剩下一个错误预测的示例,将概括性能下降。 LS是任务不合时宜的,可以应用于任何监督的学习问题,从自然语言理解和图像分类到分子财产预测。经验结果表明,LS能够产生与人类识别偏见相关的惊人挑战分裂。此外,我们证明,将强大的学习算法(例如DRO)与LS启用自动偏差确定的拆分相结合。与以前的最先进相比,当训练和验证期间偏见的来源未知时,我们显着提高了最差的组绩效(平均为23.4%)。

Classifiers are biased when trained on biased datasets. As a remedy, we propose Learning to Split (ls), an algorithm for automatic bias detection. Given a dataset with input-label pairs, ls learns to split this dataset so that predictors trained on the training split cannot generalize to the testing split. This performance gap suggests that the testing split is under-represented in the dataset, which is a signal of potential bias. Identifying non-generalizable splits is challenging since we have no annotations about the bias. In this work, we show that the prediction correctness of each example in the testing split can be used as a source of weak supervision: generalization performance will drop if we move examples that are predicted correctly away from the testing split, leaving only those that are mis-predicted. ls is task-agnostic and can be applied to any supervised learning problem, ranging from natural language understanding and image classification to molecular property prediction. Empirical results show that ls is able to generate astonishingly challenging splits that correlate with human-identified biases. Moreover, we demonstrate that combining robust learning algorithms (such as group DRO) with splits identified by ls enables automatic de-biasing. Compared to previous state-of-the-art, we substantially improve the worst-group performance (23.4% on average) when the source of biases is unknown during training and validation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源