论文标题

活性列液表面的形态动力学

Morphodynamics of Active Nematic Fluid Surfaces

论文作者

Al-Izzi, Sami C., Morris, Richard G.

论文摘要

构建了可变形弯曲表面上活性列液的行为的形态动力方程,以较大的变形极限构建。重点放在构成正常变形的客观速率的制定上,同时确保切向流是Eulerian的,并且在列马式自由能中使用表面衍生物(而不是协变量)的使用,从而使该表面偏重地结合了局部局部顺序,以使表面的平面弯曲外弯曲。然后,将重点放在表面几何形状及其与流体动力学的动态相互作用上,然后表征了几种说明性的不稳定性。其中包括scriven-love数字及其列表类似物的作用不可忽略的案例,并且可以通过föppl-von-kármán数字的类似物来表征主动的列表强迫。对于前者,通过粘性耗散将列纹理的流量和变化与表面几何结合。这表明这会导致列内管的非平凡松弛动力学。对于后者,列表的活性将夫妻迫使夫妻迫使列列自由能的表面弯曲术语,从而在管形中产生了较大的(主动荷叶边)和收缩(主动珠宝)不稳定性,以及列纹理中的主动弯曲不稳定性。与平面外壳相比,这种弯曲不稳定性现在具有由管的外部曲率设定的阈值。最后,我们检查了位于几乎平坦的表面上的拓扑缺陷,并表明存在稳定状态,其中缺陷弹性,活性和不可忽略的自旋连接的结合驱动了表面的形状变化。

Morphodynamic equations governing the behaviour of active nematic fluids on deformable curved surfaces are constructed in the large deformation limit. Emphasis is placed on the formulation of objective rates that account for normal deformations whilst ensuring that tangential flows are Eulerian, and the use of the surface derivative (rather than the covariant derivative) in the nematic free energy, which elastically couples local order to out-of-plane bending of the surface. Focusing on surface geometry and its dynamical interplay with the hydrodynamics, several illustrative instabilities are then characterised. These include cases where the role of the Scriven-Love number and its nematic analogue are non-negligible, and where the active nematic forcing can be characterised by an analogue of the Föppl-von-Kármán number. For the former, flows and changes to the nematic texture are coupled to surface geometry by viscous dissipation. This is shown to result in non-trivial relaxation dynamics for a nematic tube. For the latter, the nematic active forcing couples to the surface bending terms of the nematic free energy, resulting in extensile (active ruffling) and contractile (active pearling) instabilities in the tube shape, as well as active bend instabilities in the nematic texture. In comparison to the flat case, such bend instabilities now have a threshold set by the extrinsic curvature of the tube. Finally, we examine a topological defect located on an almost flat surface and show that there exists a steady state where a combination of defect elasticity, activity and non-negligible spin-connection drive a shape change in the surface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源