论文标题

有条件的平均治疗效应估计,略有约束模型

Conditional average treatment effect estimation with marginally constrained models

论文作者

van Amsterdam, Wouter A. C., Ranganath, Rajesh

论文摘要

治疗效应估计通常可以从随机对照试验中获得,作为某个患者人群的单个平均治疗效果。条件平均治疗效果(CATE)的估计对于个性化的治疗决策更有用,但是随机试验通常太小而无法估计CATE。医学文献中的例子利用了随机试验报道的相对治疗效果(例如,一种赔率比率),以使用大型观察数据集估算CATE。估计这些CATE模型的一种方法是将相对治疗效果用作抵消,同时估计了协变量特定的未经处理的风险。我们观察到,随机对照试验中报道的几率比例不是偏移模型中所需的几率比例,因为试验通常报告了边缘赔率比率。我们介绍了一个约束或正规机,以更好地利用随机对照试验的边际赔率比率,发现在标准观察性因果推理假设下,此方法提供了对CATE的一致估计。接下来,我们表明,在存在未观察到的混杂的情况下,偏移方法对于CATE估计无效。我们研究偏移假设和边际约束是否导致CATE相对于使用随机试验的平均治疗效果估计的替代方案的更好近似值。我们从经验上表明,当基础CATE具有足够的变化时,约束和偏移方法会导致更紧密的近似CATE。

Treatment effect estimates are often available from randomized controlled trials as a single average treatment effect for a certain patient population. Estimates of the conditional average treatment effect (CATE) are more useful for individualized treatment decision making, but randomized trials are often too small to estimate the CATE. Examples in medical literature make use of the relative treatment effect (e.g. an odds-ratio) reported by randomized trials to estimate the CATE using large observational datasets. One approach to estimating these CATE models is by using the relative treatment effect as an offset, while estimating the covariate-specific untreated risk. We observe that the odds-ratios reported in randomized controlled trials are not the odds-ratios that are needed in offset models because trials often report the marginal odds-ratio. We introduce a constraint or regularizer to better use marginal odds-ratios from randomized controlled trials and find that under the standard observational causal inference assumptions this approach provides a consistent estimate of the CATE. Next, we show that the offset approach is not valid for CATE estimation in the presence of unobserved confounding. We study if the offset assumption and the marginal constraint lead to better approximations of the CATE relative to the alternative of using the average treatment effect estimate from the randomized trial. We empirically show that when the underlying CATE has sufficient variation, the constraint and offset approaches lead to closer approximations to the CATE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源