论文标题

人类的角色

Human's Role in-the-Loop

论文作者

Gal, Avigdor, Shraga, Roee

论文摘要

最近需要处理大量数据,从各种来源到达高速度,这些数据集成的质量是各种各样的真实性。这种具有挑战性的环境(通常称为大数据)呈现出许多现有技术,尤其是那些人类密集型,过时的技术。大数据还产生了技术进步,例如物联网,云计算和深度学习,因此提供了一个新的,令人兴奋且具有挑战性的研究议程。鉴于数据的可用性和机器学习技术的改进,该博客讨论了人类和机器在实现匹配方面的认知任务中的各自作用,旨在确定人类和机器的传统角色是否可能发生变化。我们认为,这种调查将铺平一种方法,以更好地利用人力和机器资源。我们将讨论两种可能的变化模式,即人类和人类。人类旨在在试图超越人类匹配者的表现时使用机器学习算法探索开箱即用的潜在匹配推理。追求开箱即用的思维,机器和深度学习可以参与匹配。人类在探讨如何通过在匹配过程中为算法匹配器分配具有对称角色的人类匹配者来更好地使人类参与匹配循环。

Data integration has been recently challenged by the need to handle large volumes of data, arriving at high velocity from a variety of sources, which demonstrate varying levels of veracity. This challenging setting, often referred to as big data, renders many of the existing techniques, especially those that are human-intensive, obsolete. Big data also produces technological advancements such as Internet of things, cloud computing, and deep learning, and accordingly, provides a new, exciting, and challenging research agenda. Given the availability of data and the improvement of machine learning techniques, this blog discusses the respective roles of humans and machines in achieving cognitive tasks in matching, aiming to determine whether traditional roles of humans and machines are subject to change. Such investigation, we believe, will pave a way to better utilize both human and machine resources in new and innovative manners. We shall discuss two possible modes of change, namely humans out and humans in. Humans out aim at exploring out-of-the-box latent matching reasoning using machine learning algorithms when attempting to overpower human matcher performance. Pursuing out-of-the-box thinking, machine and deep learning can be involved in matching. Humans in explores how to better involve humans in the matching loop by assigning human matchers with a symmetric role to algorithmic matcher in the matching process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源