论文标题
混合子概念和分区功能
Hybrid subconvexity and the partition function
论文作者
论文摘要
我们为分区函数的Hardy-Ramanujan-Rademacher公式中的误差项提供了上限。主要输入是在$ q $和频谱参数方面的中心值$ l(\ tfrac 12,f \ tfrac {q} {\ cdot})$绑定的新型混合子凸度,其中$ f $是hecke-maass cusp for $ qus_0(n)$γ_0(n)$ q $ s $ quins a fiff。
We give an upper bound for the error term in the Hardy-Ramanujan-Rademacher formula for the partition function. The main input is a new hybrid subconvexity bound for the central value $L(\tfrac 12,f\times (\tfrac{q}{\cdot}))$ in the $q$ and spectral parameter aspects, where $f$ is a Hecke-Maass cusp form for $Γ_0(N)$ and $q$ is a fundamental discriminant.