论文标题
对光核的常规和微观三轴曲柄模型的预测
Predictions of conventional and microscopic triaxial cranking models for light nuclei
论文作者
论文摘要
单轴旋转的常规曲柄模型经常用于研究变形核中的旋转特征。但是,该模型使用恒定的角速度。为了研究动态角速度的影响,三轴旋转(MSCRM3)的定量微观时间反向和D2不变式曲柄模型(包括残留校正项)源自核Schrodinger方程的单位转换和使用Hartree-Fock方法。除了角速度和残留项外,三轴旋转(CCRM3)schrodinger方程的传统曲柄模型的形式是相同的,并且以相似的方式迭代求解。本文使用自洽变形的谐波启动器电位来确定CCRM3和MSCRM3预测的20,24mg和28SI的旋转特征的差异。研究的旋转特征是:内在系统的旋转松弛,旋转状态的稳定性,各种旋转模式,核形状,它们的过渡和带终止。 MSCRM3预测,观察到的在j = 6和8之间的20ne的能量水平间距降低,并将其发生归因于颤动旋转的淬灭。通过包括旋转轨道相互作用以及角动量和相互作用的平方的残差,可以消除观察到的20NE和MSCRM3预测的激发能之间的剩余差异。 CCRM3不能预测MSCRM3预测的三维现象(例如20NE的能量级间距降低,而在Prate 28SI和三轴24mg中的j = 12时旋转带终止等等。由角度速度产生)。因此,我们得出的结论是,CCRM3实际上是单轴旋转模型。因此,使用CCRM3或其单轴版本,会错过捕获三维旋转现象。
The conventional cranking model for uniaxial rotation is frequently used to study rotational features in deformed nuclei. However, the model uses a constant angular velocity. To investigate the effect of a dynamic angular velocity, a quantal microscopic time-reversal and D2 invariant cranking model for triaxial rotation (MSCRM3) including residual correction terms is derived from a unitary transformation of the nuclear Schrodinger equation and using Hartree-Fock approach. Except for the angular velocity and residual terms, MSCRM3 and the conventional cranking model for triaxial rotation (CCRM3) Schrodinger equations are identical in form, and are solved iteratively in a similar manner. The article identifies the differences in the rotational features predicted by CCRM3 and MSCRM3 for 20Ne, 24Mg, and 28Si using a self-consistent deformed harmonic-oscillator potential. The rotational features studied are: rotational relaxation of the intrinsic system, stability of the rotational states, various rotation modes, nuclear shapes, their transitions, and band termination. MSCRM3 predicts the observed reduced energy-level spacing in 20Ne between J=6 and 8 and attributes its occurrence to quenching of a wobbly rotation. The remaining discrepancy between the observed and MSCRM3-predicted excitation energies for 20Ne is removed by including the spin-orbit interaction and the residuals of the square of the angular momentum and interaction. CCRM3 does not predict the three dimensional phenomena predicted by MSCRM3 (such as the reduced energy-level spacing in 20Ne and the rotational-band termination at J=12 in prolate 28Si and triaxial 24Mg, etc. arising from the angular velocity). We, therefore, conclude that CCRM3 is effectively a uniaxial rotation model. Therefore, using CCRM3 or its uniaxial version, one would miss capturing three-dimensional rotation phenomena.