论文标题

单参数量子估计理论中的分析技术:重点审查

Analytical techniques in single and multi-parameter quantum estimation theory: a focused review

论文作者

Slaoui, Abdallah, Drissi, Lalla Btissam, Saidi, El Hassan, Laamara, Rachid Ahl

论文摘要

当我们进入量子技术时代时,量子估计理论为确定现代技术应用中的高精度设备提供了一个具有操作激励的框架。任何估计过程的目的都是从嵌入物理系统中的未知参数中提取信息,例如估计收敛到参数的真实值。根据数学统计中的Cramér-Rao不平等,单参数估计程序的Fisher信息以及在多参数估算的情况下的Fisher Information Matrix是代表指定给定统计模型参数的最终精度的关键数量。在量子估计策略中,通常很难在给定的量子状态下得出此类数量的分析表达式。这篇综述提供了有关量子渔民信息的分析计算以及在各种情况下和通过几种方法中的量子Fisher信息矩阵的全面技术。此外,它提供了从经典估计理论到许多自由量子系统的数学过渡。为了阐明这些结果,我们使用一些示例检查了这些发展。还解决了其他挑战,包括它们与量子相关性的链接以及饱和量子cramér-rao结合的饱和。

As we enter the era of quantum technologies, quantum estimation theory provides an operationally motivating framework for determining high precision devices in modern technological applications. The aim of any estimation process is to extract information from an unknown parameter embedded in a physical system such as the estimation converges to the true value of the parameter. According to the Cramér-Rao inequality in mathematical statistics, the Fisher information in the case of single-parameter estimation procedures, and the Fisher information matrix in the case of multi-parameter estimation, are the key quantities representing the ultimate precision of the parameters specifying a given statistical model. In quantum estimation strategies, it is usually difficult to derive the analytical expressions of such quantities in a given quantum state. This review provides comprehensive techniques on the analytical calculation of the quantum Fisher information as well as the quantum Fisher information matrix in various scenarios and via several methods. Furthermore, it provides a mathematical transition from classical to quantum estimation theory applied to many freedom quantum systems. To clarify these results, we examine these developments using some examples. Other challenges, including their links to quantum correlations and saturating the quantum Cramér-Rao bound, are also addressed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源