论文标题

相对论流体动力学的强大的,可表现的不连续的盖尔金方法

A Robust, Performance-Portable Discontinuous Galerkin Method for Relativistic Hydrodynamics

论文作者

Glines, Forrest W., Beckwith, Kristian R. C., Braun, Joshua R., Cyr, Eric C., Ober, Curtis C., Bettencourt, Matthew, Cartwright, Keith L., Conde, Sidafa, Miller, Sean T., Roberds, Nicholas, Roberts, Nathan V., Swan, Matthew S., Pawlowski, Roger

论文摘要

在这项工作中,我们提出了一种不连续的 - 加尔金方法,用于发展相对论流体动力学。我们包括对分析和迭代方法的探索,以从状态的理想方程和taub-matthews近似状态方程中恢复原始变量。我们还提出了一个新的操作员,用于在元素内的所有基点上执行物理允许的保守状态,同时保留保守状态的体积平均值。我们使用Kokkos性能通用性库实现此方法,以使CPU和GPU上的性能运行。与有限体积方法相比,我们使用这种方法来探索相对论的开尔文 - 赫尔姆霍尔兹不稳定性。最后,我们探讨了我们在CPU和GPU上实施的性能。

In this work, we present a discontinuous-Galerkin method for evolving relativistic hydrodynamics. We include an exploration of analytical and iterative methods to recover the primitive variables from the conserved variables for the ideal equation of state and the Taub-Matthews approximation to the Synge equation of state. We also present a new operator for enforcing a physically permissible conserved state at all basis points within an element while preserving the volume average of the conserved state. We implement this method using the Kokkos performance-portability library to enable running at performance on both CPUs and GPUs. We use this method to explore the relativistic Kelvin- Helmholtz instability compared to a finite volume method. Last, we explore the performance of our implementation on CPUs and GPUs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源