论文标题

紧密的分析限制了与设备无关的随机性和非局部性之间的权衡

Tight analytic bound on the trade-off between device-independent randomness and nonlocality

论文作者

Wooltorton, Lewis, Brown, Peter, Colbeck, Roger

论文摘要

共享纠缠量子系统的两个当事方可以生成仅使用共享经典资源而产生的相关性。这些非局部相关性是量子理论的基本特征,但也具有实际应用。例如,它们可用于独立于设备的(DI)随机数生成,其安全性与设备内部执行的操作无关。可以从某些给定的非本地相关性产生的可认证随机性量是关键的兴趣量。在这里,我们在最大可认证的随机性上得出了紧密的分析界限,这是使用clauser-horne-shorne-holt(CHSH)值表示的非局部性的函数。我们表明,对于每个CHSH值,大于本地值($ 2 $),最高$ 3 \ sqrt {3} /2 \ approx2.598$与该CHSH值存在量子相关性,该CHSH值证明了两个最大的全球随机性。除了此CHSH值之外,最大可认证的随机性下降。我们为CHSH值提供了第二个贝尔不等式的家族,超过$ 3 \ sqrt {3}/2 $,并证明他们证明给定CHSH值的最大可能随机性。因此,我们的工作提供了可实现的上限,可以对任何CHSH值进行认证的随机性数量。我们说明了结果的鲁棒性,以及如何使用Werner状态噪声模型在实践中使用它们来提高随机性的产生速率。

Two parties sharing entangled quantum systems can generate correlations that cannot be produced using only shared classical resources. These nonlocal correlations are a fundamental feature of quantum theory but also have practical applications. For instance, they can be used for device-independent (DI) random number generation, whose security is certified independently of the operations performed inside the devices. The amount of certifiable randomness that can be generated from some given non-local correlations is a key quantity of interest. Here we derive tight analytic bounds on the maximum certifiable randomness as a function of the nonlocality as expressed using the Clauser-Horne-Shimony-Holt (CHSH) value. We show that for every CHSH value greater than the local value ($2$) and up to $3\sqrt{3}/2\approx2.598$ there exist quantum correlations with that CHSH value that certify a maximal two bits of global randomness. Beyond this CHSH value the maximum certifiable randomness drops. We give a second family of Bell inequalities for CHSH values above $3\sqrt{3}/2$, and show that they certify the maximum possible randomness for the given CHSH value. Our work hence provides an achievable upper bound on the amount of randomness that can be certified for any CHSH value. We illustrate the robustness of our results, and how they could be used to improve randomness generation rates in practice, using a Werner state noise model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源