论文标题

靠近监督更好:通过基于组件的歧视器的单发字体生成

Look Closer to Supervise Better: One-Shot Font Generation via Component-Based Discriminator

论文作者

Kong, Yuxin, Luo, Canjie, Ma, Weihong, Zhu, Qiyuan, Zhu, Shenggao, Yuan, Nicholas, Jin, Lianwen

论文摘要

由于大量具有复杂结构的字符,自动字体生成仍然是一个充满挑战的研究问题。通常,只有少数样本可以用作样式/内容参考(称为少量学习),这进一步增加了保持当地风格模式或详细的字形结构的困难。我们研究了先前研究的缺点,发现粗粒歧视器不足以监督字体发生器。为此,我们提出了一个新颖的组件感知模块(CAM),该模块(CAM)监督发电机以更细粒度的级别(即组件级别)将内容和样式脱离。与以前努力提高发电机复杂性的研究不同,我们旨在为相对简单的发电机进行更有效的监督,以实现其全部潜力,这是字体生成的全新视角。整个框架通过将组件级的监督与对抗性学习耦合,从而取得了显着的结果,因此我们称其为组件引导的GAN,很快就会CG-GAN。广泛的实验表明,我们的方法的表现优于最先进的单发字体生成方法。此外,它可以应用于手写单词综合和场景文本图像编辑,暗示了我们的方法的概括。

Automatic font generation remains a challenging research issue due to the large amounts of characters with complicated structures. Typically, only a few samples can serve as the style/content reference (termed few-shot learning), which further increases the difficulty to preserve local style patterns or detailed glyph structures. We investigate the drawbacks of previous studies and find that a coarse-grained discriminator is insufficient for supervising a font generator. To this end, we propose a novel Component-Aware Module (CAM), which supervises the generator to decouple content and style at a more fine-grained level, i.e., the component level. Different from previous studies struggling to increase the complexity of generators, we aim to perform more effective supervision for a relatively simple generator to achieve its full potential, which is a brand new perspective for font generation. The whole framework achieves remarkable results by coupling component-level supervision with adversarial learning, hence we call it Component-Guided GAN, shortly CG-GAN. Extensive experiments show that our approach outperforms state-of-the-art one-shot font generation methods. Furthermore, it can be applied to handwritten word synthesis and scene text image editing, suggesting the generalization of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源