论文标题

建立一个指定的开放域对话系统,利用大规模语言模型

Building a Role Specified Open-Domain Dialogue System Leveraging Large-Scale Language Models

论文作者

Bae, Sanghwan, Kwak, Donghyun, Kim, Sungdong, Ham, Donghoon, Kang, Soyoung, Lee, Sang-Woo, Park, Woomyoung

论文摘要

最近的开放域对话模型带来了许多突破。但是,构建聊天系统是不可扩展的,因为它通常需要大量的人类对话数据,尤其是在执行角色,样式或安全等功能时。在这项工作中,我们研究了在开放域对话系统上强加作用的挑战,目的是使系统保持一致的角色,同时与人类自然交流。为了实现这一目标,系统必须满足角色规范,该角色规范包括既定功能的某些条件以及有关是否允许某些类型的话语的系统策略。为此,我们提出了一个有效的数据收集框架,以利用大规模语言模型的信息学习,用于从头开始构建角色符合对话数据集的大规模语言模型。然后,我们将开放域对话系统的各种体系结构在满足角色规格的同时保持对话能力的方式进行比较。自动和人类评估表明,我们的模型返回几乎没有界限的话语,从而保持一般指标的竞争性能。我们发布了我们构建的韩国对话数据集,以进一步研究。

Recent open-domain dialogue models have brought numerous breakthroughs. However, building a chat system is not scalable since it often requires a considerable volume of human-human dialogue data, especially when enforcing features such as persona, style, or safety. In this work, we study the challenge of imposing roles on open-domain dialogue systems, with the goal of making the systems maintain consistent roles while conversing naturally with humans. To accomplish this, the system must satisfy a role specification that includes certain conditions on the stated features as well as a system policy on whether or not certain types of utterances are allowed. For this, we propose an efficient data collection framework leveraging in-context few-shot learning of large-scale language models for building role-satisfying dialogue dataset from scratch. We then compare various architectures for open-domain dialogue systems in terms of meeting role specifications while maintaining conversational abilities. Automatic and human evaluations show that our models return few out-of-bounds utterances, keeping competitive performance on general metrics. We release a Korean dialogue dataset we built for further research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源