论文标题
在形成控制下移动机器人网络的本地拓扑推断
Local Topology Inference of Mobile Robotic Networks under Formation Control
论文作者
论文摘要
相互作用拓扑对于有效合作移动机器人网络(MRN)至关重要。我们专注于在形成控制下的MRN的局部拓扑推理问题,其中观察范围有限的推理机器人可以在形成机器人中操纵。这个问题面临着不可观察的地层机器人,无法接近的地层输入和未知相互作用范围的高度耦合影响所带来的新挑战。这里的新思想是提倡一种差距策略,以完美避免在过滤输入时无法观察到的机器人的影响。为此,我们开发了连续的算法,以确定观测范围内变化的机器人设置的可行恒定机器人子集,并估算形成输入和相互作用范围。然后,使用先前推断的信息设计了一个普通的最小二乘局部拓扑估计器。诉诸于集中度度量,我们证明了所提出的估计器的收敛速率和准确性,考虑到了以前的步骤的估计误差。还分析了非相同观察插槽和更复杂情景的扩展。综合模拟测试和方法比较证实了理论发现。
The interaction topology is critical for efficient cooperation of mobile robotic networks (MRNs). We focus on the local topology inference problem of MRNs under formation control, where an inference robot with limited observation range can manoeuvre among the formation robots. This problem faces new challenges brought by the highly coupled influence of unobservable formation robots, inaccessible formation inputs, and unknown interaction range. The novel idea here is to advocate a range-shrink strategy to perfectly avoid the influence of unobservable robots while filtering the input. To that end, we develop consecutive algorithms to determine a feasible constant robot subset from the changing robot set within the observation range, and estimate the formation input and the interaction range. Then, an ordinary least squares based local topology estimator is designed with the previously inferred information. Resorting to the concentration measure, we prove the convergence rate and accuracy of the proposed estimator, taking the estimation errors of previous steps into account. Extensions on nonidentical observation slots and more complicated scenarios are also analyzed. Comprehensive simulation tests and method comparisons corroborate the theoretical findings.