论文标题

部分可观测时空混沌系统的无模型预测

Learning Effective SDEs from Brownian Dynamics Simulations of Colloidal Particles

论文作者

Evangelou, Nikolaos, Dietrich, Felix, Bello-Rivas, Juan M., Yeh, Alex, Stein, Rachel, Bevan, Michael A., Kevrekidis, Ioannis G.

论文摘要

我们使用从布朗动力学模拟获得的数据构建了一个降低的,数据驱动的参数依赖性有效的随机微分方程(ESDE),以用于电场介导的胶体结晶。我们使用扩散图(一种多种学习算法)来识别一组有用的潜在可观察物。在这个潜在空间中,我们使用受数值随机集成剂启发的深度学习体系结构来识别ESDE,并将其与传统的Kramers-Moyal扩展估计进行比较。我们表明,获得的变量和学习的动力学准确地编码了布朗动态模拟的物理。我们进一步说明我们的减少模型捕获了相应的实验数据的动力学。我们的尺寸降低/减少模型识别方法可以轻松地移植到一类广泛的粒子系统动力学实验/模型中。

We construct a reduced, data-driven, parameter dependent effective Stochastic Differential Equation (eSDE) for electric-field mediated colloidal crystallization using data obtained from Brownian Dynamics Simulations. We use Diffusion Maps (a manifold learning algorithm) to identify a set of useful latent observables. In this latent space we identify an eSDE using a deep learning architecture inspired by numerical stochastic integrators and compare it with the traditional Kramers-Moyal expansion estimation. We show that the obtained variables and the learned dynamics accurately encode the physics of the Brownian Dynamic Simulations. We further illustrate that our reduced model captures the dynamics of corresponding experimental data. Our dimension reduction/reduced model identification approach can be easily ported to a broad class of particle systems dynamics experiments/models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源