论文标题

非紧密riemannian歧管上的椭圆差异夹杂物

Elliptic differential inclusions on non-compact Riemannian manifolds

论文作者

Kristály, Alexandru, Mezei, Ildikó I., Szilák, Károly

论文摘要

我们研究了涉及Laplace-Beltrami操作员和Hardy Type单数项的非紧凑型riemannian歧管上的一大批椭圆形差异包含物。根据非线性项的行为和riemannian歧管的曲率,我们保证对所研究的差异包含的不存在和解决方案的存在/多重性。这些证明基于非平滑变量分析以及riemannian歧管上的等距特征性能和精细特征值。在平滑的设置中,结果也是新的。

We investigate a large class of elliptic differential inclusions on non-compact complete Riemannian manifolds which involves the Laplace-Beltrami operator and a Hardy-type singular term. Depending on the behavior of the nonlinear term and on the curvature of the Riemannian manifold, we guarantee non-existence and existence/multiplicity of solutions for the studied differential inclusion. The proofs are based on nonsmooth variational analysis as well as isometric actions and fine eigenvalue properties on Riemannian manifolds. The results are also new in the smooth setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源