论文标题
预算分类和拒绝:一种具有多个目标的进化方法
Budgeted Classification with Rejection: An Evolutionary Method with Multiple Objectives
论文作者
论文摘要
分类系统通常被部署在资源约束的设置中,在这些设置中,必须将标签分配给预算,内存等预算,预算,顺序分类器(BSCS),通过通过一系列通过部分功能习得和评估步骤使用早期EXIT选项来处理输入来解决这些方案。这允许对防止不需要功能采集的输入进行有效评估。为了近似一个棘手的组合问题,当前的预算分类方法依赖于行为良好的损失功能,这些功能是两个主要目标(处理成本和错误)。这些方法比传统分类器提供了提高的效率,但受到配方的分析限制的限制,并且不管理其他绩效目标。值得注意的是,此类方法并未明确说明实时检测系统的重要方面 - “接受”预测的一部分满足了规避风险监视器所施加的置信标准。 我们提出了一种特定问题的遗传算法,以建立具有基于信心的拒绝选项的预算顺序分类器。考虑了三个目标 - 准确性,处理时间/成本和覆盖范围。该算法强调了帕累托效率,同时通过独特的标量来考虑综合性能的概念。实验表明,我们的方法可以在非常大的搜索空间中迅速找到全球帕累托最佳解决方案,并且在现有方法中具有竞争力,同时为选择性,预算的部署方案提供了优势。
Classification systems are often deployed in resource-constrained settings where labels must be assigned to inputs on a budget of time, memory, etc. Budgeted, sequential classifiers (BSCs) address these scenarios by processing inputs through a sequence of partial feature acquisition and evaluation steps with early-exit options. This allows for an efficient evaluation of inputs that prevents unneeded feature acquisition. To approximate an intractable combinatorial problem, current approaches to budgeted classification rely on well-behaved loss functions that account for two primary objectives (processing cost and error). These approaches offer improved efficiency over traditional classifiers but are limited by analytic constraints in formulation and do not manage additional performance objectives. Notably, such methods do not explicitly account for an important aspect of real-time detection systems -- the fraction of "accepted" predictions satisfying a confidence criterion imposed by a risk-averse monitor. We propose a problem-specific genetic algorithm to build budgeted, sequential classifiers with confidence-based reject options. Three objectives -- accuracy, processing time/cost, and coverage -- are considered. The algorithm emphasizes Pareto efficiency while accounting for a notion of aggregate performance via a unique scalarization. Experiments show our method can quickly find globally Pareto optimal solutions in very large search spaces and is competitive with existing approaches while offering advantages for selective, budgeted deployment scenarios.