论文标题

有因果解释的荟萃分析中的系统缺少数据

Systematically Missing Data in Causally Interpretable Meta-Analysis

论文作者

Steingrimsson, Jon A., Barker, David H., Bie, Ruofan, Dahabreh, Issa J.

论文摘要

可解释的荟萃分析结合了来自随机对照试验的集合中的信息,以估计可能无法实验的目标人群的治疗效应,但是可以从简单的随机样本中收集协变量信息。在此类分析中,一个关键的实践挑战是当在所有试验中收集某些基线协变量时,系统丢失了数据。在这里,当荟萃分析中的某些试验系统缺少协变量数据时,我们为目标群体的潜在(反事实)结果平均值和平均治疗效果提供了识别结果。我们提出了三个针对目标人群平均治疗效应的估计量,检查其渐近性能,并表明它们在模拟研究中具有良好的有限样本性能。我们使用估计量来分析来自两项大型肺癌筛查试验的数据,并从国家健康和营养检查调查(NHANES)中靶向人群数据。为了适应NHANES的复杂调查设计,我们修改了结合调查重量并允许聚类的方法。

Causally interpretable meta-analysis combines information from a collection of randomized controlled trials to estimate treatment effects in a target population in which experimentation may not be possible but covariate information can be collected from a simple random sample. In such analyses, a key practical challenge is systematically missing data when some baseline covariates are not collected in all trials. Here, we provide identification results for potential (counterfactual) outcome means and average treatment effects in the target population when covariate data are systematically missing from some of the trials in the meta-analysis. We propose three estimators for the average treatment effect in the target population, examine their asymptotic properties, and show that they have good finite-sample performance in simulation studies. We use the estimators to analyze data from two large lung cancer screening trials and target population data from the National Health and Nutrition Examination Survey (NHANES). To accommodate the complex survey design of the NHANES, we modify the methods to incorporate survey sampling weights and allow for clustering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源