论文标题

连续时间网络中依赖关系事件的多元社区鹰队模型

The Multivariate Community Hawkes Model for Dependent Relational Events in Continuous-time Networks

论文作者

Soliman, Hadeel, Zhao, Lingfei, Huang, Zhipeng, Paul, Subhadeep, Xu, Kevin S.

论文摘要

随机块模型(SBM)是用于网络数据最广泛使用的生成模型之一。考虑到与SBM相同的假设,许多连续的动态网络模型构建了:鉴于块或社区成员身份,所有对节点之间的边缘或事件在条件上是独立的,这阻止了它们再现高阶基序,例如在真实网络中通常观察到的三角形。我们提出了多元社区霍克斯(Mulch)模型,这是一种非常灵活的基于社区的模型,用于连续时间网络,使用结构化的多元霍克斯过程在节点对之间引入依赖性。我们使用基于光谱聚类和基于可能性的本地改进程序拟合模型。我们发现,我们所提出的覆盖模型比在预测和生成任务的现有模型要准确得多。

The stochastic block model (SBM) is one of the most widely used generative models for network data. Many continuous-time dynamic network models are built upon the same assumption as the SBM: edges or events between all pairs of nodes are conditionally independent given the block or community memberships, which prevents them from reproducing higher-order motifs such as triangles that are commonly observed in real networks. We propose the multivariate community Hawkes (MULCH) model, an extremely flexible community-based model for continuous-time networks that introduces dependence between node pairs using structured multivariate Hawkes processes. We fit the model using a spectral clustering and likelihood-based local refinement procedure. We find that our proposed MULCH model is far more accurate than existing models both for predictive and generative tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源