论文标题
对比度学习,以改善口语理解中的ASR鲁棒性
Contrastive Learning for Improving ASR Robustness in Spoken Language Understanding
论文作者
论文摘要
口语理解(SLU)是机器理解人类语音以进行更好互动的必不可少的任务。但是,自动语音识别器(ASR)的错误通常会损害理解表现。实际上,对于目标场景,ASR系统可能不容易调整。因此,本文着重于学习使用对比目标对ASR错误进行鲁棒性的学习话语表示,并通过结合监督的对比度学习和模型微调中的自我验证来进一步增强概括能力。三个基准数据集的实验证明了我们提出的方法的有效性。
Spoken language understanding (SLU) is an essential task for machines to understand human speech for better interactions. However, errors from the automatic speech recognizer (ASR) usually hurt the understanding performance. In reality, ASR systems may not be easy to adjust for the target scenarios. Therefore, this paper focuses on learning utterance representations that are robust to ASR errors using a contrastive objective, and further strengthens the generalization ability by combining supervised contrastive learning and self-distillation in model fine-tuning. Experiments on three benchmark datasets demonstrate the effectiveness of our proposed approach.