论文标题

氢诱导的高锰型孪晶诱导塑料钢的硬化

Hydrogen-induced hardening of a high-manganese twinning induced plasticity steel

论文作者

Khanchandani, Heena, Ponge, Dirk, Zaefferer, Stefan, Gault, Baptiste

论文摘要

高甲虫孪晶诱导的可塑性(TIP)钢表现出高应变硬化,高抗拉力强度和高延展性,这使它们对结构应用有吸引力。在低拉伸应变速率下,旋转钢易于氢含糖(HE)。不过,在这里,我们研究了Fe-26.9mn-0.28C(wt。%)twip钢的表面层电化学氢充电产生的硬化和加强。我们观察到电化学氢气后的产量强度增加了20%,伴随着延展性从75%降低到10%,而拉伸应变率为10-3S-1。通过电子反向散射衍射(EBSD)和电子通道对比度成像(ECCI),检查了应变水平,5%和7%的应变水平的微观结构演化,以研究硬化区域的脱位结构。如预期的那样,氢化的微观结构和材料的未充电区域的演变有所不同。未充电的区域显示出纠缠的脱位结构,表明从有限数量的潜在共面滑动系统中滑落。相反,氢映射原子探针层析成像揭示到晶界的氢隔离,通过阻止晶界处的脱位源来延迟脱位成核。因此,带电的区域首先显示了细胞的形成,表明来自更多非稳定滑移系统的纠缠纠缠。随着应变的增加,这些细胞溶解,堆叠断层和应变诱导的ε-敏感石由氢的存在促进。详细讨论了氢对位错结构和总体变形机制的影响。

High-manganese twinning-induced plasticity (TWIP) steels exhibit high strain hardening, high tensile strength, and high ductility, which make them attractive for structural applications. At low tensile strain rates, TWIP steels are prone to hydrogen embrittlement (HE). Here though, we study the hardening and strengthening resulting from electrochemical hydrogen-charging of a surface layer of a Fe-26.9Mn-0.28C (wt.%) TWIP steel. We observed a 20% increase in yield strength following the electrochemical hydrogen-charging, accompanied by a reduction in ductility from 75% to 10% at a tensile strain rate of 10-3s-1. The microstructural evolution during tensile deformation was examined at strain levels of 3%, 5% and 7% by electron backscatter diffraction (EBSD) and electron channeling contrast imaging (ECCI) to study the dislocation structure of the hardened region. As expected, the microstructure of the hydrogen-hardened and the uncharged regions of the material evolve differently. The uncharged areas show entangled dislocation structures, indicating slip from a limited number of potentially coplanar slip systems. In contrast, hydrogen segregated to the grain boundaries, revealed by the deuterium-labelled atom probe tomography, delays the dislocation nucleation by blocking dislocation sources at the grain boundaries. The charged areas hence first show the formation of cells, indicating dislocation entanglement from more non-coplanar slip systems. With increasing strain, these cells dissolve, and stacking faults and strain-induced ε-martensite are formed, promoted by the presence of hydrogen. The influence of hydrogen on dislocation structures and the overall deformation mechanism is discussed in details.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源