论文标题

将多样性播种成AI艺术

Seeding Diversity into AI Art

论文作者

Zammit, Marvin, Liapis, Antonios, Yannakakis, Georgios N.

论文摘要

本文认为,符合视觉和/或语义语料库的驱动的生成艺术缺乏被认为是创造性的必要标准。在文献中确定的几个问题中,我们关注以下事实:在真空中创建单个图像的生成对抗网络(GAN)缺乏关于其产品与以前创建的图像的不同概念。我们设想,将进化算法中的新颖性保存机制与gan的力量相结合的算法可以故意指导其既好又新颖的产出的创造过程。在本文中,我们使用OpenAI的剪辑模型根据语义提示来使用图像生成的最新进展,从而用短暂的进化发散搜索中断了GAN的迭代过程。然后,进化的结果用于继续GAN的迭代过程。我们假设这种干预将导致更多新颖的产出。使用当地竞争的新颖性搜索来检验我们的假设,这是一种质量多样性进化算法,可以增加视觉多样性,同时以遵守语义提示的形式保持质量,我们探索不同的视觉多样性概念如何影响算法的过程和乘积。结果表明,即使是对视觉多样性的简单衡量标准也可以帮助对抗gan引起的相似图像的漂移。第一个实验为引入更高的意图和更细微的gan驱动器打开了一个新的方向。

This paper argues that generative art driven by conformance to a visual and/or semantic corpus lacks the necessary criteria to be considered creative. Among several issues identified in the literature, we focus on the fact that generative adversarial networks (GANs) that create a single image, in a vacuum, lack a concept of novelty regarding how their product differs from previously created ones. We envision that an algorithm that combines the novelty preservation mechanisms in evolutionary algorithms with the power of GANs can deliberately guide its creative process towards output that is both good and novel. In this paper, we use recent advances in image generation based on semantic prompts using OpenAI's CLIP model, interrupting the GAN's iterative process with short cycles of evolutionary divergent search. The results of evolution are then used to continue the GAN's iterative process; we hypothesise that this intervention will lead to more novel outputs. Testing our hypothesis using novelty search with local competition, a quality-diversity evolutionary algorithm that can increase visual diversity while maintaining quality in the form of adherence to the semantic prompt, we explore how different notions of visual diversity can affect both the process and the product of the algorithm. Results show that even a simplistic measure of visual diversity can help counter a drift towards similar images caused by the GAN. This first experiment opens a new direction for introducing higher intentionality and a more nuanced drive for GANs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源