论文标题
揭示基于GAAS的纳米电子设备的电荷分布:大型实验数据集方法
Unveiling the charge distribution of a GaAs-based nanoelectronic device: A large experimental data-set approach
论文作者
论文摘要
在量子纳米电子学中,数值模拟已成为无处不在的工具。然而,与实验的比较通常是在定性级别进行的,或者仅限于具有少数拟合参数的单个设备。在这项工作中,我们通过将单个模型的结果与具有48个不同几何形状的110个设备的大型实验数据集进行比较,评估了这些模拟的预测能力。这些设备是各种形状和尺寸的量子点接触,该尺寸是由沉积在高迁移率GAAS/GAALAS二维电子气体顶部的静电门制成的。我们研究了在大门上施加的捏电压,以耗尽各种空间位置的二维电子气体。我们认为,捏电压是设备中电荷分布的非常强大的签名。大型实验数据集使我们能够严格检查建模并得出可靠的一参数模型,该模型可以在原位进行校准,这是进行预测模拟的关键步骤。
In quantum nanoelectronics, numerical simulations have become an ubiquitous tool. Yet the comparison with experiments is often done at a qualitative level or restricted to a single device with a handful of fitting parameters. In this work, we assess the predictive power of these simulations by comparing the results of a single model with a large experimental data set of 110 devices with 48 different geometries. The devices are quantum point contacts of various shapes and sizes made with electrostatic gates deposited on top of a high mobility GaAs/GaAlAs two dimensional electron gas. We study the pinch-off voltages applied on the gates to deplete the two-dimensional electron gas in various spatial positions. We argue that the pinch-off voltages are a very robust signature of the charge distribution in the device. The large experimental data set allows us to critically review the modeling and arrive at a robust one-parameter model that can be calibrated in situ, a crucial step for making predictive simulations.