论文标题

通过线性回归学习,从学习

Star-specific Key-homomorphic PRFs from Learning with Linear Regression

论文作者

Sehrawat, Vipin Singh, Yeo, Foo Yee, Vassilyev, Dmitriy

论文摘要

我们引入了一种新颖的方法,通过生成确定性但充分独立的LWE实例,通过使用线性回归模型来构建,这些方法是通过(无线)通信误差生成的。我们还介绍了恒星特异性的键合(SSKH)伪随机函数(PRFS),这些函数是由构造它们的各个当事方所定义的。我们使用LWE的偏差变体来构建SSKH PRF家族。构建SSKH PRF的各方集合被排列为具有共享顶点的星形图,即,集合对可能具有非空的交叉点。我们将SSKH PRF家族的安全性降低到LWE的硬度。为了在存在被动/主动和外部/内部对手的情况下建立可以通过一组派对来构建的SSKH PRF数量,我们证明,在最大$ t $ t $ - $ k $ k $ -k $ -k $ - 均匀的套装家族$ \ nathcal $ \ nathcal {h} $ $ a $ a $ a $ a的$ a a $ a a in a a $ a的$ a a in a a a $ a a a a $ a的$ i(IS) \ in \ Mathcal {h}:| a | = k $,(ii)最多最多$ t $ -Intersecting:$ \ forall a,b \ in \ mathcal {h},b \ neq a:| | a \ cap b | \ leq t $,(iii)最大封面:$ \ forall a \ in \ Mathcal {h}:a \ not \ subseteq \ bigCup \ limits _ {\ ordack _ {\ ordack {b \ in \ intcal in \ Mathcal {h}出于相同的目的,我们定义和计算由重叠训练数据集生成的不同线性回归假设之间的相互信息。

We introduce a novel method to derandomize the learning with errors (LWE) problem by generating deterministic yet sufficiently independent LWE instances that are constructed by using linear regression models, which are generated via (wireless) communication errors. We also introduce star-specific key-homomorphic (SSKH) pseudorandom functions (PRFs), which are defined by the respective sets of parties that construct them. We use our derandomized variant of LWE to construct a SSKH PRF family. The sets of parties constructing SSKH PRFs are arranged as star graphs with possibly shared vertices, i.e., the pairs of sets may have non-empty intersections. We reduce the security of our SSKH PRF family to the hardness of LWE. To establish the maximum number of SSKH PRFs that can be constructed -- by a set of parties -- in the presence of passive/active and external/internal adversaries, we prove several bounds on the size of maximally cover-free at most $t$-intersecting $k$-uniform family of sets $\mathcal{H}$, where the three properties are defined as: (i) $k$-uniform: $\forall A \in \mathcal{H}: |A| = k$, (ii) at most $t$-intersecting: $\forall A, B \in \mathcal{H}, B \neq A: |A \cap B| \leq t$, (iii) maximally cover-free: $\forall A \in \mathcal{H}: A \not\subseteq \bigcup\limits_{\substack{B \in \mathcal{H} \\ B \neq A}} B$. For the same purpose, we define and compute the mutual information between different linear regression hypotheses that are generated from overlapping training datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源