论文标题

量子非凡的边界关键行为的普遍性

Quantum extraordinary-log universality of boundary critical behavior

论文作者

Sun, Yanan, Lv, Jian-Ping

论文摘要

最近发现非凡的人物普遍性引起了人们对经典和量子边界关键现象的强烈兴趣。尽管做出了巨大的努力,但量子非凡的普遍性的存在仍然存在极大的争议。在这里,通过利用量子蒙特卡洛模拟,我们研究了具有新兴批量关键性的二维bose-Hubbard模型的量子边缘临界。 On top of an insulating bulk, the open edges experience a Kosterlitz-Thouless-like transition into the superfluid phase when the hopping strength is sufficiently enhanced on edges.在批量关键点,开放边缘显示了特殊,普通和非凡的临界阶段。在非凡阶段,对数与两点相关性和超流体刚度的有限尺寸缩放量有关,这允许非凡的努力通用性的经典量词对应关系。多亏了现代量子模拟器在晶格中相互作用的玻色子,在实验中可能实现了边缘临界阶段。

The recent discovery of extraordinary-log universality has generated intense interest in classical and quantum boundary critical phenomena. Despite tremendous efforts, the existence of quantum extraordinary-log universality remains extremely controversial. Here, by utilizing quantum Monte Carlo simulations, we study the quantum edge criticality of a two-dimensional Bose-Hubbard model featuring emergent bulk criticality. On top of an insulating bulk, the open edges experience a Kosterlitz-Thouless-like transition into the superfluid phase when the hopping strength is sufficiently enhanced on edges. At the bulk critical point, the open edges exhibit the special, ordinary, and extraordinary critical phases. In the extraordinary phase, logarithms are involved in the finite-size scaling of two-point correlation and superfluid stiffness, which admit a classical-quantum correspondence for the extraordinary-log universality. Thanks to modern quantum emulators for interacting bosons in lattices, the edge critical phases might be realized in experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源