论文标题
在Kähler指标空间中长长的测量学
Long geodesics in the space of Kähler metrics
论文作者
论文摘要
我们对Kähler指标空间中的大地测量学发表了一些评论,这些指标一直定义。这样的曲线是由全体形态载体场引起的,我们表明,对于常规的测量学来说,这确实是如此,而广义测量学的问题仍然是开放的(据我们所知)。我们还给出了此类大地测量学的导数的结果,这意味着Atiyah和Guillemin-sternberg定理的变体在某些时刻图的图像中。
We give some remarks on geodesics in the space of Kähler metrics that are defined for all time. Such curves are conjecturally induced by holomorphic vector fields, and we show that this is indeed so for regular geodesics, whereas the question for generalized geodesics is still open (as far as we know). We also give a result about the derivative of such geodesics which implies a variant of a theorem of Atiyah and Guillemin-Sternberg on convexity of the image of certain moment maps.