论文标题

拓扑缺陷的绕组向量:多曲线Chern数字

Winding vectors of topological defects: Multiband Chern numbers

论文作者

Fünfhaus, Axel, Kopp, Thilo, Lettl, Elias

论文摘要

Chern数字可以在与波函数相关相关的涡流字段中计算。在受间隙保护的频段中,Chern数量等于携带涡流的通量总数。在存在拓扑缺陷之类的dirac锥体的情况下,这种方法会变得有问题,特别是如果它们缺乏明确的绕组数字。我们开发了一个方案,将拓扑缺陷包括在涡流场框架中。绕组的数字由围绕缺陷的接触点时相位空间中相位的行为确定。为了解决可能缺乏缠绕数的数字,我们利用了更一般的绕组向量概念。我们证明了该ANSATZ对霍夫塔特模型带产生的狄拉克锥的有用性。

Chern numbers can be calculated within a frame of vortex fields related to phase conventions of a wave function. In a band protected by gaps the Chern number is equivalent to the total number of flux carrying vortices. In the presence of topological defects like Dirac cones this method becomes problematic, in particular if they lack a well-defined winding number. We develop a scheme to include topological defects into the vortex field frame. A winding number is determined by the behavior of the phase in reciprocal space when encircling the defect's contact point. To address the possible lack of a winding number we utilize a more general concept of winding vectors. We demonstrate the usefulness of this ansatz on Dirac cones generated from bands of the Hofstadter model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源