论文标题

具有最小耦合标量场的重力的光子表面,阴影和积聚磁盘

Photon surfaces, shadows and accretion disks in gravity with minimally coupled scalar field

论文作者

Bogush, Igor, Gal'tsov, Dmitri, Gyulchev, Galin, Kobialko, Kirill, Nedkova, Petya, Vetsov, Tsvetan

论文摘要

在本文中,我们对两个最近获得的爱因斯坦重力旋转几何形状描述的黑洞模拟器的可能可观察到的图像进行了顺序研究,并最小化与标量场。其中一个是“ Kerr样”(KL),可以看作是旋转的Fisher-Janis-Newman-Winicour(FJNW)溶液的合法替代方案,而另一个(TSL)是Tomimatsu-Sato解决方案的标量概括。与以前的旋转FJNW版本不同,这些解决方案确实确实满足了系统的运动方程。我们的研究包括赤道圆形轨道,光子区域,重力阴影以及薄积分磁盘的辐射的分析和数值计算,用于对象的角动量和标量电荷的各种值。发现TSL溶液以高精度模拟KERR为所有有效的参数值。对于KERR和TSL情况,阴影与圆的偏差之间的最大差异不超过1%,并且适合实验性观察数据M87*。然而,接近极端物体显示出观测到的吸积盘的流出光度的峰值比Kerr黑洞的峰值小。 KL解决方案也不能被标量电荷的小值的实验数据排除。随着标量电荷的增加,光学特性发生了巨大变化。阴影可以变得倍增,强烈地植入,并且光子区域不会隐藏奇异性,因此应将其归类为强烈的奇异性。

In this article, we conduct a sequential study of possible observable images of black hole simulators described by two recently obtained rotating geometries in Einstein gravity, minimally coupled to a scalar field. One of them, "Kerr-like" (KL), can be seen as a legitimate alternative to the rotating Fisher-Janis-Newman-Winicour (FJNW) solution, and the other (TSL) is a scalar generalization of the Tomimatsu-Sato solution. Unlike the previous version of the rotating FJNW, these solutions do indeed satisfy the system's equations of motion. Our study includes both analytical and numerical calculations of equatorial circular orbits, photon regions, gravitational shadows, and radiation from thin accretion disks for various values of the object's angular momentum and scalar charge. The TSL solution was found to simulate Kerr for all valid parameter values with high accuracy. The maximum difference between the deviations of shadows from a circle for the Kerr and TSL cases does not exceed 1% and fits into the experimental observational data M87*. However, near-extreme objects show two times smaller peak values of the observed outflow luminosity of the accretion disk than for the Kerr black hole. The KL solution cannot be ruled out by the experimental data for small values of the scalar charge either. As the scalar charge increases, the optical properties change dramatically. The shadow can become multiply connected, strongly oblate, and the photon region does not hide the singularity, so it should be classified as a strong singularity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源