论文标题
歧管上有歧管的范围,在RICCI曲率上结合。 ii
Limits of manifolds with a Kato bound on the Ricci curvature. II
论文作者
论文摘要
我们证明,获得的度量空间作为闭合的riemannian歧管的限制,其ricci曲率满足均匀的kato绑定是可整流的。在非挑剔的假设和强大的Kato结合的情况下,我们还表明,对于任何$α\(0,1)$中的任何$α\,空间的常规部分都在开放式设置中,其结构是$ \ Mathcal {C}^α$ -Manifold的结构。
We prove that metric measure spaces obtained as limits of closed Riemannian manifolds with Ricci curvature satisfying a uniform Kato bound are rectifiable. In the case of a non-collapsing assumption and a strong Kato bound, we additionally show that for any $α\in (0,1)$ the regular part of the space lies in an open set with the structure of a $\mathcal{C}^α$-manifold.