论文标题
$ r $ raphs on $ r+1 $顶点的turán数字
Turán numbers of $r$-graphs on $r+1$ vertices
论文作者
论文摘要
令$ h_k^r $表示$ r $ - 均匀的超图和$ k $边缘和$ r+1 $ dertices,其中$ k \ leq r+1 $(很容易看出,这种超图是独特的,直到同构为同构)。全部$ k \ geq 3 $的$π(h_k^r)\ leq \ frac {k-2} $ frac {k-2} $ for $ k \ geq 3 $和$π(h_3^r)\ geq 2^{1-r} $ for $ k = 3 $。我们证明$π(h_k^r)\ geq(c_k-o(1))\,r^{ - (1+ \ frac {1} {k-2})} $ as $ r \ to \ infty $。在这种情况下,$ k = 3 $,我们证明$π(h_3^r)\ geq(1.7215-o(1))\,r^{ - 2} $ as $ r \ to \ to \ infty $和$π(h_3^r)\ geq r^{ - 2} $ for All $ r $。
Let $H_k^r$ denote an $r$-uniform hypergraph with $k$ edges and $r+1$ vertices, where $k \leq r+1$ (it is easy to see that such a hypergraph is unique up to isomorphism). The known general bounds on its Turán density are $π(H_k^r) \leq \frac{k-2}{r}$ for all $k \geq 3$, and $π(H_3^r) \geq 2^{1-r}$ for $k=3$. We prove that $π(H_k^r) \geq (C_k - o(1)) \, r^{-(1+\frac{1}{k-2})}$ as $r\to\infty$. In the case $k=3$, we prove $π(H_3^r) \geq (1.7215 - o(1)) \, r^{-2}$ as $r\to\infty$, and $π(H_3^r) \geq r^{-2}$ for all $r$.