论文标题
在复杂的二次网络中同步和聚类
Synchronization and clustering in complex quadratic networks
论文作者
论文摘要
在继续工作的过程中,我们研究网络的连接性与整体动态之间的联系。众所周知,这种关系很难在自然,复杂的网络中数学上接近。在我们的工作中,我们旨在使用复杂的二次节点动力学在典型框架中理解它,并在网络中耦合,我们称之为复杂的二次网络(CQNS)。 在以前定义了网络的Mandelbrot和Julia集的扩展之后,我们目前专注于这些集合的节点投影的行为,并定义和分析节点聚类和同步的现象。我们研究导致淋巴结相同或不同的mandelbrot集的机制。我们建议聚类由网络连接模式强烈决定,这些簇的几何形状进一步由连接权重控制。然后,我们说明了使用扩散张量成像从197个人类受试者获得的一组现有大脑的基于拖拉术的网络中同步的概念。 在振荡器网络(例如神经网络)的背景下,同步和聚类进行了充分研究。了解与这些概念如何应用于CQN的相似之处有助于我们对动态网络中普遍原理的理解,并可能有助于将理论结果扩展到自然,复杂的系统。
In continuation of prior work, we investigate ties between a network's connectivity and ensemble dynamics. This relationship is notoriously difficult to approach mathematically in natural, complex networks. In our work, we aim to understand it in a canonical framework, using complex quadratic node dynamics, coupled in networks which we call complex quadratic networks (CQNs). After previously defining extensions of the Mandelbrot and Julia sets for networks, we currently focus on the behavior of the node-wise projections of these sets, and on defining and analyzing the phenomena of node clustering and synchronization. We investigate the mechanisms that lead to nodes exhibiting identical or different Mandelbrot set. We propose that clustering is strongly determined by the network connectivity patterns, with the geometry of these clusters further controlled by the connection weights. We then illustrate the concept of synchronization in an existing set of whole brain, tractography-based networks obtained from 197 human subjects using diffusion tensor imaging. Synchronization and clustering are well-studied in the context of networks of oscillators, such as neural networks. Understanding the similarities to how these concepts apply to CQNs contributes to our understanding of universal principles in dynamic networks, and may help extend theoretical results to natural, complex systems.