论文标题
Tomosar-Alista:通过深度展开的网络进行有效的Tomosar成像
TomoSAR-ALISTA: Efficient TomoSAR Imaging via Deep Unfolded Network
论文作者
论文摘要
合成孔径雷达(SAR)断层扫描(Tomosar)因其能够从多个观测值中沿着海拔方向实现三维重建的能力引起了极大的兴趣。近年来,已将压缩传感(CS)技术引入了Tomosar中,考虑其超分辨率能力有限。鉴于,基于CS的方法遭受了几种缺点,包括弱噪声性,高计算复杂性和复杂参数微调。在不同的CS算法中,迭代软阈值算法(ISTA)被广泛用作强大的重建方法,但是,ISTA算法中的参数通常是手动选择的,通常需要一个时间耗时的微调过程才能实现最佳性能。为了实现有效的Tomosar成像,在本文中提出了一个新颖的稀疏展开网络(Alista)针对Tomosar成像问题的新型稀疏网络,并且通过深度学习从训练数据中学到了ISTA的关键参数,以避免复杂的参数微调,并显着减轻培训负担。此外,实验证明,使用传统的CS算法作为培训标签是可行的,该算法提供了一种有形的监督培训方法,即使在实际应用中没有标记的数据的情况下,也可以实现更好的3D重建性能。
Synthetic aperture radar (SAR) tomography (TomoSAR) has attracted remarkable interest for its ability in achieving three-dimensional reconstruction along the elevation direction from multiple observations. In recent years, compressed sensing (CS) technique has been introduced into TomoSAR considering for its super-resolution ability with limited samples. Whereas, the CS-based methods suffer from several drawbacks, including weak noise resistance, high computational complexity and complex parameter fine-tuning. Among the different CS algorithms, iterative soft-thresholding algorithm (ISTA) is widely used as a robust reconstruction approach, however, the parameters in the ISTA algorithm are manually chosen, which usually requires a time-consuming fine-tuning process to achieve the best performance. Aiming at efficient TomoSAR imaging, a novel sparse unfolding network named analytic learned ISTA (ALISTA) is proposed towards the TomoSAR imaging problem in this paper, and the key parameters of ISTA are learned from training data via deep learning to avoid complex parameter fine-tuning and significantly relieves the training burden. In addition, experiments verify that it is feasible to use traditional CS algorithms as training labels, which provides a tangible supervised training method to achieve better 3D reconstruction performance even in the absence of labeled data in real applications.