论文标题

DST索引预测的深度学习方法

A Deep Learning Approach to Dst Index Prediction

论文作者

Abduallah, Yasser, Wang, Jason T. L., Bose, Prianka, Zhang, Genwei, Gerges, Firas, Wang, Haimin

论文摘要

干扰风暴时间(DST)指数是太空天气研究中的重要且有用的测量。它已被用来表征地磁风暴的大小和强度。负DST值意味着地球的磁场被削弱,这发生在暴风雨中。在本文中,我们提出了一种称为DST Transformer的新型深度学习方法,以提前1-6小时进行短期,根据NASA Space Science数据协调的存档提供的太阳风参数对DST索引进行预测。 DST变形金刚将多头注意层与贝叶斯推断相结合,在做出DST预测时,它能够量化差异不确定性和认知不确定性。实验结果表明,所提出的DST变压器在根平方误差和R平方方面优于机器学习方法。此外,DST变压器可以同时产生数据和模型不确定性量化结果,而现有方法无法完成。据我们所知,这是贝叶斯深度学习首次用于DST索引预测。

The disturbance storm time (Dst) index is an important and useful measurement in space weather research. It has been used to characterize the size and intensity of a geomagnetic storm. A negative Dst value means that the Earth's magnetic field is weakened, which happens during storms. In this paper, we present a novel deep learning method, called the Dst Transformer, to perform short-term, 1-6 hour ahead, forecasting of the Dst index based on the solar wind parameters provided by the NASA Space Science Data Coordinated Archive. The Dst Transformer combines a multi-head attention layer with Bayesian inference, which is capable of quantifying both aleatoric uncertainty and epistemic uncertainty when making Dst predictions. Experimental results show that the proposed Dst Transformer outperforms related machine learning methods in terms of the root mean square error and R-squared. Furthermore, the Dst Transformer can produce both data and model uncertainty quantification results, which can not be done by the existing methods. To our knowledge, this is the first time that Bayesian deep learning has been used for Dst index forecasting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源