论文标题

基于拓扑密码系统中奇数总颜色的新技术

New Techniques Based On Odd-Edge Total Colorings In Topological Cryptosystem

论文作者

Yao, Bing, Zhang, Mingjun, Yang, Sihua, Wang, Guoxing

论文摘要

为了构建双层晶格朝向拓扑密码仪,我们定义了四种新型的奇数魔法型色彩:奇数边的优美差异总颜色,奇数边缘边缘差异,总颜色,奇怪的边缘边缘魔术总彩色,以及本文中的奇数边缘 - 边缘奇异的杂物总差异。我们的随机衰减算法基于将随机的叶子添加到图表中,以产生连续图形,以示意我们新的奇怪型色彩。我们使用复杂的图形来制作毛毛虫图形晶格和互补的图形晶格,使得这些新图形晶格中的每个图都承认均匀的$ W $ w $ agmagic的总颜色。另一方面,在图形晶格和整数晶格之间找到一些连接是一项有趣的研究,这对于在量子计算机时代的应用也很重要。我们设置了双型$ w $ - 杂志的图形格(作为公共图形晶格与私人图形晶格)和$ w $ - 巨大的图形晶格同构,用于产生更复杂的基于拓扑数的字符串。

For building up twin-graphic lattices towards topological cryptograph, we define four kinds of new odd-magic-type colorings: odd-edge graceful-difference total coloring, odd-edge edge-difference total coloring, odd-edge edge-magic total coloring, and odd-edge felicitous-difference total coloring in this article. Our RANDOMLY-LEAF-ADDING algorithms are based on adding randomly leaves to graphs for producing continuously graphs admitting our new odd-magic-type colorings. We use complex graphs to make caterpillar-graphic lattices and complementary graphic lattices, such that each graph in these new graphic lattices admits a uniformly $W$-magic total coloring. On the other hands, finding some connections between graphic lattices and integer lattices is an interesting research, also, is important for application in the age of quantum computer. We set up twin-type $W$-magic graphic lattices (as public graphic lattices vs private graphic lattices) and $W$-magic graphic-lattice homomorphism for producing more complex topological number-based strings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源