论文标题
三元性高度曲面的轨道轨道
Orbits of automorphism group of trinomial hypersurfaces
论文作者
论文摘要
Trinomial Hyperfaces构成了与与复杂性的圆环作用紧密相关的天然仿期代数品种。我们研究这些超曲面上的自动形态组的轨道。我们证明,每个非辅助三项型品种都有有限数量的轨道。我们研究了奇异的轨道,这使我们对某些柔性三项式超曲面的所有轨道描述了所有轨道。另外,我们还可以获得一类具有唯一变量的超曲面的轨道的描述。
Trinomial hypersurfaces form a natural class of affine algebraic varieties closely connected with varieties admitting a torus action of complexity one. We investigate orbits of the automorphism group on these hypersurfaces. We prove that each nonrigid trinomial variety has finite number of orbits. We investigate singular orbits and this gives us description of all orbits for some classes of flexible trinomial hypersurfaces. Also we obtain a description of orbits for a class of hypersurfaces having a unique variable with power one in the equation.