论文标题

基于模型的深度学习:关于深度学习和优化的交集

Model-Based Deep Learning: On the Intersection of Deep Learning and Optimization

论文作者

Shlezinger, Nir, Eldar, Yonina C., Boyd, Stephen P.

论文摘要

决策算法用于多种不同的应用程序。设计决策算法的常规方法采用原则和简化的建模,基于该建模,可以通过可通过可拖动优化来确定决策。最近,使用高度参数体系结构从数据调整而不依赖数学模型的深度学习方法变得越来越流行。基于模型的优化和以数据为中心的深度学习通常被认为是不同的学科。在这里,我们将它们表征为连续频谱的边缘,特异性和参数化各不相同,并为位于该频谱中间的方法提供了教程风格的呈现,称为基于模型的深度学习。我们伴随着我们的演讲,其中包括超分辨率和随机控制的典型示例,并使用提供的特征并专门说明它们是如何表达它们的。使用各种应用中的实验结果证明了结合基于模型的优化和深度学习的收益,从生物医学成像到数字通信。

Decision making algorithms are used in a multitude of different applications. Conventional approaches for designing decision algorithms employ principled and simplified modelling, based on which one can determine decisions via tractable optimization. More recently, deep learning approaches that use highly parametric architectures tuned from data without relying on mathematical models, are becoming increasingly popular. Model-based optimization and data-centric deep learning are often considered to be distinct disciplines. Here, we characterize them as edges of a continuous spectrum varying in specificity and parameterization, and provide a tutorial-style presentation to the methodologies lying in the middle ground of this spectrum, referred to as model-based deep learning. We accompany our presentation with running examples in super-resolution and stochastic control, and show how they are expressed using the provided characterization and specialized in each of the detailed methodologies. The gains of combining model-based optimization and deep learning are demonstrated using experimental results in various applications, ranging from biomedical imaging to digital communications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源