论文标题

在度量空间中本质上的Hölder部分

Intrinsically Hölder sections in metric spaces

论文作者

Di Donato, Daniela

论文摘要

我们引入了公制空间中本质上的Hölder图的概念。根据Le Donne和作者的最新论文,我们证明了一些相关的结果,因为Ascoli-arzelàCompactness定理,Ahlfors-David的规律性以及此类部分的扩展定理。在本说明的第一部分中,借助Cheeger理论,我们定义了合适的集合,以便在$ \ r $或$ \ c上获得矢量空间,$ convex set和与本质上Hölder图的等价关系。在Lipschitz案例中,这最后三个属性也是新的。在整个论文中,我们都使用基本的数学工具。

We introduce a notion of intrinsically Hölder graphs in metric spaces. Following a recent paper of Le Donne and the author, we prove some relevant results as the Ascoli-Arzelà compactness Theorem, Ahlfors-David regularity and the Extension Theorem for this class of sections. In the first part of this note, thanks to Cheeger theory, we define suitable sets in order to obtain a vector space over $\R$ or $\C,$ a convex set and an equivalence relation for intrinsically Hölder graphs. These last three properties are new also in the Lipschitz case. Throughout the paper, we use basic mathematical tools.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源