论文标题
通过异质变压器检测假新闻
Fake News Detection with Heterogeneous Transformer
论文作者
论文摘要
在社交网络上的假新闻传播引起了公众的需求,需要有效,有效的假新闻检测方法。通常,社交网络上的虚假新闻是多模式的,并且与用户和帖子等其他实体有各种联系。新闻内容的异质性以及与社交网络中其他实体的关系为设计模型带来了挑战,该模型可以全面捕获社交网络中实体的本地多模式语义和传播模式的全球结构表示,以便有效地和准确地对伪造的新闻进行分类。在本文中,我们提出了一个基于变压器的新型模型:HetTransFormer,以解决社交网络上的假新闻检测问题,该问题利用变压器的编码器核对器结构来捕获新闻传播模式的结构信息。我们首先捕获了社交网络中新闻,帖子和用户实体的本地异构语义。然后,我们应用变压器来捕获社交网络中传播模式的全球结构表示,以进行虚假新闻检测。三个现实世界数据集的实验表明,我们的模型能够在假新闻检测中胜过最先进的基线。
The dissemination of fake news on social networks has drawn public need for effective and efficient fake news detection methods. Generally, fake news on social networks is multi-modal and has various connections with other entities such as users and posts. The heterogeneity in both news content and the relationship with other entities in social networks brings challenges to designing a model that comprehensively captures the local multi-modal semantics of entities in social networks and the global structural representation of the propagation patterns, so as to classify fake news effectively and accurately. In this paper, we propose a novel Transformer-based model: HetTransformer to solve the fake news detection problem on social networks, which utilises the encoder-decoder structure of Transformer to capture the structural information of news propagation patterns. We first capture the local heterogeneous semantics of news, post, and user entities in social networks. Then, we apply Transformer to capture the global structural representation of the propagation patterns in social networks for fake news detection. Experiments on three real-world datasets demonstrate that our model is able to outperform the state-of-the-art baselines in fake news detection.