论文标题
跨尾巴主观耳鸣诊断的解剖和侧感
Disentangled and Side-aware Unsupervised Domain Adaptation for Cross-dataset Subjective Tinnitus Diagnosis
论文作者
论文摘要
基于EEG的耳鸣分类是耳鸣诊断,研究和治疗方法的宝贵工具。当前的大多数工作仅限于一个数据模式相似的单个数据集。但是脑电图信号是高度非平稳的,导致模型对新用户,会话或数据集的概括不佳。因此,设计一个可以推广到新数据集的模型是有益的且必不可少的。为了减轻跨数据集的分布差异,我们建议以进行跨数据核的诊断来实现分离和侧面意识的无监督域的适应性(DSUDA)。开发了一个分离的自动编码器,以使eeg信号的类别含量为单位,以提高分类能力。侧感知的无监督域适应模块将类iRrelevant信息作为域差异调整到新数据集中,并排除了差异以获取新数据集分类的类distill功能。它还对齐左耳和右耳的信号,以克服固有的脑电图差异。我们将DSUDA与最先进的方法进行了比较,我们的模型对竞争对手在全面评估标准方面取得了重大改进。结果表明,我们的模型可以成功地将其推广到新的数据集并有效地诊断耳鸣。
EEG-based tinnitus classification is a valuable tool for tinnitus diagnosis, research, and treatments. Most current works are limited to a single dataset where data patterns are similar. But EEG signals are highly non-stationary, resulting in model's poor generalization to new users, sessions or datasets. Thus, designing a model that can generalize to new datasets is beneficial and indispensable. To mitigate distribution discrepancy across datasets, we propose to achieve Disentangled and Side-aware Unsupervised Domain Adaptation (DSUDA) for cross-dataset tinnitus diagnosis. A disentangled auto-encoder is developed to decouple class-irrelevant information from the EEG signals to improve the classifying ability. The side-aware unsupervised domain adaptation module adapts the class-irrelevant information as domain variance to a new dataset and excludes the variance to obtain the class-distill features for the new dataset classification. It also align signals of left and right ears to overcome inherent EEG pattern difference. We compare DSUDA with state-of-the-art methods, and our model achieves significant improvements over competitors regarding comprehensive evaluation criteria. The results demonstrate our model can successfully generalize to a new dataset and effectively diagnose tinnitus.