论文标题

少忘了,更好,更好:终生人群的域内自我验证学习基准

Forget Less, Count Better: A Domain-Incremental Self-Distillation Learning Benchmark for Lifelong Crowd Counting

论文作者

Gao, Jiaqi, Li, Jingqi, Shan, Hongming, Qu, Yanyun, Wang, James Z., Wang, Fei-Yue, Zhang, Junping

论文摘要

人群计数在公共安全和大流行控制中具有重要的应用。强大而实用的人群计数系统必须能够在现实世界中的新传入域数据中不断学习,而不仅仅是仅适合一个域。处理多个域时,现成的方法具有一些缺点:(1)由于从各个领域的固有数据分布差异,该模型在训练新域的图像之后,在旧域中的性能有限(甚至急剧下降),这被称为灾难性遗忘; (2)特定域中训练有素的模型由于域移动而在其他看不见的域中达到了不完善的性能; (3)它导致线性增加存储开销,要么将所有数据混合以进行培训,要么简单地培训了数十个单独的型号,以便在可用新域中为不同的域进行培训。为了克服这些问题,我们调查了一项新的人群计数任务,该任务在渐进域训练环境中,称为终生人群计数。它的目标是使用增量域更新的单个模型来减轻灾难性遗忘并提高概括能力。具体而言,我们建议一个自我验证学习框架作为终身人群数量的基准(少算,计数更好或flcb),这有助于该模型可持续利用以前的有意义的知识,以使更好的人群数量计算,以减轻新数据到达时的遗忘。此外,开发了一个新的定量度量标准,标准化的向后转移(NBWT),以评估终生学习过程中模型的遗忘程度。广泛的实验结果表明,我们提出的基准在达到低灾难性遗忘程度和强大的概括能力方面具有优势。

Crowd counting has important applications in public safety and pandemic control. A robust and practical crowd counting system has to be capable of continuously learning with the new incoming domain data in real-world scenarios instead of fitting one domain only. Off-the-shelf methods have some drawbacks when handling multiple domains: (1) the models will achieve limited performance (even drop dramatically) among old domains after training images from new domains due to the discrepancies of intrinsic data distributions from various domains, which is called catastrophic forgetting; (2) the well-trained model in a specific domain achieves imperfect performance among other unseen domains because of the domain shift; and (3) it leads to linearly increasing storage overhead, either mixing all the data for training or simply training dozens of separate models for different domains when new ones are available. To overcome these issues, we investigated a new crowd counting task in the incremental domains training setting called Lifelong Crowd Counting. Its goal is to alleviate the catastrophic forgetting and improve the generalization ability using a single model updated by the incremental domains. Specifically, we propose a self-distillation learning framework as a benchmark (Forget Less, Count Better, or FLCB) for lifelong crowd counting, which helps the model sustainably leverage previous meaningful knowledge for better crowd counting to mitigate the forgetting when the new data arrive. In addition, a new quantitative metric, normalized backward transfer (nBwT), is developed to evaluate the forgetting degree of the model in the lifelong learning process. Extensive experimental results demonstrate the superiority of our proposed benchmark in achieving a low catastrophic forgetting degree and strong generalization ability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源